
Grid Orientation Effect and MultiPoint Flux
Approximation

Robert Eymard, Cindy Guichard and Roland Masson

Abstract Some cases of nonlinear coupling between a diffusion equation, related
to the computation of a pressure field within a porous medium,and a convection
equation, related to the conservation of a species, lead to the apparition of the so-
called grid orientation effect. We propose in this paper a new procedure to eliminate
this Grid Orientation Effect, only based on the modificationof the stencil of the
discrete version of the convection equation. Numerical results show the efficiency
and the accuracy of the method.
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1 Introduction

In the 1980’s, numerous papers have been concerned with the so-called grid ori-
entation effect, in the framework of oil reservoir simulation. This effect is due
to the anisotropy of the numerical diffusion induced by the upstream weighting
scheme, and the computation of a pressure field, solution to an elliptic equation in
which the diffusion coefficient depends on the value of the convected unknown. This
problem has been partly solved in the framework of industrial codes, in which the
meshes are structured and regular (mainly based on squares and cubes). The liter-
ature on this problem is huge, and is impossible to exhaustively quote; let us only
cite [3, 4, 6, 10, 11] and references therein. In the 2000’s, aseries of new schemes
have been introduced in order to compute these coupled problems on general grids
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[1, 2, 5, 8]. But, in most of the cases, the non regular meshes conserve structured
directions, although the shape of the control volumes is no longer that of a regular
cube. This is the case for the Corner Point Geometries [9] widely used in indus-
trial reservoir simulations. The control volumes which arecommonly used in 3D
reservoir simulations are generalised “hexahedra”, in thesense that each of them
is neighboured by 6 other control volumes. In this case, the stencil for the pres-
sure resolution may have a 27-point stencil (using for instance a MPFA scheme).
Nevertheless, selecting a 27-point stencil instead of a 7-point stencil for the pres-
sure resolution has no influence on the Grid Orientation Effect, which results from
the stencil used in upstream weighted mass exchanges coupled with the pressure
resolution.

In order to overcome this problem, we study here a generalisation of methods
consisting in increasing the stencil of the convection equation, without modifying
the pressure equation. The method will be presented on a simplified problem, mod-
elling immiscible two-phase flow within a porous medium. LetΩ ⊂R

d (with d = 2
or 3) be the considered space domain. We consider the following two-phase flow
problem inΩ : {

ut −div(k1(u)Λ∇p) = 0
(1−u)t−div(k2(u)Λ∇p) = 0,

(1)

whereu(x,t) ∈ [0,1] is the saturation of phase 1 (for example water), and therefore
1− u(x,t) is the saturation of phase 2,k1 is the mobility of phase 1 (increasing
function such thatk1(0) = 0),k2 is the mobility of phase 2 (decreasing function such
thatk2(1) = 0), andp is the common pressure of both phases (the capillary pressure
is assumed to be negligible in front of the pressure gradients due to injection and
production wells) and we consider a horizontal medium with permeability tensorΛ .
It is therefore possible to see System (1) as the coupling of an elliptic problem with
unknownp and a nonlinear scalar hyperbolic problem with unknownu:






m(u) = k1(u)+k2(u), f (u) =
k1(u)

m(u)
divF = 0 with F =−m(u)Λ∇p
ut +div( f (u)F) = 0

(2)

We then consider a MultiPoint Flux Approximation finite volume scheme for the
approximation of Problem (1), coupled with an upstream weighting scheme for the
mass exchanges. Such a scheme may be written :

F (n)
K,L = m(n)

KL ∑
M∈M

aM
KLp(n+1)

M with ∑
M∈M

aM
KL = 0 (3)

∑
L∈NK

F (n)
K,L = 0 (4)

F(n)
K,L +F(n)

L,K = 0 (5)

|K|
(

u(n+1)
K −u(n)

K

)
+ δtn ∑

L∈NK

(
f (u(n)

K )(F (n)
K,L)+− f (u(n)

L )(F (n)
K,L)−

)
= 0. (6)
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In the above system, we denote byM the finite volume mesh ofΩ , K,L are control
volumes,NK is the set of the neighbours ofK (i.e.control volumes exchanging fluid

mass withK), n is the time index andδtn is the time step (δtn = t(n+1)− t(n)), p(n)
M

andu(n)
M are respectively the pressure and the saturation in controlvolumeM at time

t(n). The coefficientsaM
KL are computed with respect to the geometry of the mesh

and toΛ . The valuem(n)
KL is any average value (arithmetic or harmonic) of the values

m(u(n)
K ) andm(u(n)

L ). ThenF (n)
K,L is the approximation ofF · nnn at the interfaceK|L

between control volumesK andL at time stepn, and, for all reala, the valuesa+

anda− are respectively defined by max(a,0) and max(−a,0).

The setNK of the neighbours ofK is classically defined as all the control volumes
which have a common face withK. But, as we show in this paper, this notion may be
relaxed. Defining the notion of “stencil”S⊂M 2 by S= {(K,L) ∈M 2,L ∈NK},

this stencil is then equal to the set of all(K,L)∈M 2 such thatF(n)
K,L may be different

from 0. In view of (5),Smust verify the symmetry property

S⊂M
2 and∀(K,L) ∈ S,(L,K) ∈ S. (7)

As we stated in the introduction, the drawback of the use of this stencil for prac-

tical problems, whereF (n)
K,L is computed from the resolution of a pressure equation,

is that it leads to the Grid Orientation Effect. Therefore, we want to replace (6) by

|K|
(

u(n+1)
K −u(n)

K

)
+ δtn ∑

L∈N̂K

(
f (u(n)

K )(F̂ (n)
K,L)

+− f (u(n)
L )(F̂ (n)

K,L)−
)

= 0, (8)

where the new stencil̂S, defined byŜ= {(K,L) ∈M 2,L ∈ N̂K}, is such that the

Grid Orientation Effect is suppressed. In (8), the values ofthe fluxes(F̂ (n)
K,L)

(K,L)∈Ŝ
will be set such that the two following properties hold: the flux continuity holds

F̂(n)
K,L + F̂(n)

L,K = 0, ∀(K,L) ∈ Ŝ, (9)

and the balance in the control volumes is the same as that satisfied by the fluxes

(F (n)
K,L)(K,L)∈S:

∑
L,(K,L)∈Ŝ

F̂ (n)
K,L = ∑

L,(K,L)∈S

F (n)
K,L, ∀K ∈M . (10)

In view of (15), we again prescribe the symmetry property

Ŝ⊂M 2 and∀(K,L) ∈ Ŝ, (L,K) ∈ Ŝ. (11)

The section 2 of this paper is devoted to the description of a method for constructing

F̂ (n)
K,L for a given stencil̂S, which ensures properties (9) and (10) (corresponding, for

a givenn, to (15) and (16) below). The application of this method to the case of an
initial five-point pattern stencilSand of a nine-point stencil̂Sis detailed in Section 3.



4 R. Eymard et al.

Then numerical tests show the efficiency of the method to fightthe Grid Orientation
Effect (section 4).

2 Construction of F̂K,L in the new stencilŜ

The method presented in this section concerns the reconstruction of the fluxes,
which has to be applied to each time step. Hence, for the simplicity of notation,
we drop the indexn in this section. For a stencil̂S⊂M 2 such that (11) holds and
for given(K,L) ∈M 2, the setŜK,L of the paths fromK to L following Ŝ is defined
by

ŜK,L :=

{
P =

{
(Ki ,Ki+1), i = 1, . . . ,N−1 with K1 = K, KN = L
andKi 6= K j for i 6= j = 1, · · · ,N

}
⊂ Ŝ

}
. (12)

We denote by♯ŜK,L the cardinality ofŜK,L, i.e. the number of pathsP from K to L

following Ŝ. For anyP= {(Ki ,Ki+1), i = 1, . . . ,N−1}∈ ŜK,L, we denote byP← the
inverse path fromL toK following Ŝ, defined byP← = {(Ki+1,Ki), i = 1, . . . ,N−1}.

We may now state the following result.

Lemma 1 (New stencil and fluxes).Let M be a finite set, let S⊂M 2 be given
such that(7) holds. Let(FK,L)(K,L)∈S be a family such that the property

FK,L +FL,K = 0, ∀(K,L) ∈M 2

holds. LetŜ⊂M 2 be given such that(11)holds and such that
∀(K,L) ∈ S, ♯ŜK,L > 0.

For all (K,L) ∈ S, let(FP
K,L)P∈ŜK,L

be a family such that

∀(K,L) ∈ S, ∑P∈ŜK,L
FP

K,L = FK,L,

satisfying the property

∀(K,L) ∈ S, ∀P∈ ŜK,L, FP
K,L +FP←

L,K = 0. (13)

Then the family(F̂K,L)(K,L)∈Ŝ, defined by

∀(I ,J) ∈ Ŝ, F̂I ,J = ∑
(K,L)∈S

∑
P∈ŜK,L

ξI ,J,PFP
K,L, (14)

whereξI ,J,P is such thatξI ,J,P = 1 if (I ,J) ∈ P andξI ,J,P = 0 otherwise, satisfies

F̂K,L + F̂L,K = 0, ∀(K,L) ∈ Ŝ, (15)

and

∑
L,(K,L)∈Ŝ

F̂K,L = ∑
L,(K,L)∈S

FK,L, ∀K ∈M . (16)
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Proof. Firstly, using definitions, for a given(I ,J) ∈ Ŝ, we have(J, I) ∈ Ŝand
F̂J,I = ∑

(L,K)∈S
∑

P∈ŜL,K

ξJ,I ,PFP
L,K . Then, thanks to the following equivalences






(L,K) ∈ S⇐⇒ (K,L) ∈ S
P∈ ŜL,K ⇐⇒ P← ∈ ŜK,L

(J, I) ∈ P ⇐⇒ (I ,J) ∈ P←,

and using (13), we can rewritêFJ,I as follows

F̂J,I = − ∑
(K,L)∈S

∑
P∈ŜK,L

ξI ,J,PFP
K,L = −F̂I ,J ,

which proves (15).
Secondly, for a givenI ∈M , by reordering the sums, we can write that

∑
J,(I ,J)∈Ŝ

F̂I ,J = ∑
J,(I ,J)∈Ŝ

∑
(K,L)∈S

∑
P∈ŜK,L

ξI ,J,PFP
K,L = ∑

(K,L)∈S
∑

P∈ŜK,L

χI ,PFP
K,L

whereχI ,P = ∑
J,(I ,J)∈Ŝ

ξI ,J,P is equal to 1 if there existsJ ∈M such that(I ,J) ∈ P

(thereforeI 6= L), and to 0 otherwise. Note that, for(K,L) ∈ S with K 6= I and for
P∈ ŜK,L with χI ,P = 1, we haveI 6= L, (L,K) ∈ S, P← ∈ ŜL,K andχI ,P← = 1. So,
using (13), we obtain

∑
(K,L)∈S s.t.K 6=I

∑
P∈ŜK,L

χI ,PFP
K,L = 0.

Therefore we can write

∑
J,(I ,J)∈Ŝ

F̂I ,J = ∑
L,(I ,L)∈S

∑
P∈ŜI ,L

χI ,PFP
I ,L = ∑

L,(I ,L)∈S
∑

P∈ŜI ,L

FP
I ,L = ∑

L,(I ,L)∈S

FI ,L,

which proves (16).

3 Application to an initial five-point stencil on a structured
quadrilateral mesh

Let us assume, taking the example of a 2D situation, that the initial stencilS is a
five-point stencil, defined on a regular quadrilateral mesh

S= {(K,L) ∈M
2, K andL have a common edge}, (17)

and that the new stencil̂S is the nine-point stencil (see the figure below), defined by
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Ŝ= S∪{(K,L) ∈M
2, K andL have a common point}. (18)

Then we define(FP
K,L)P∈ŜK,L

, for all P∈ ŜK,L and all(K,L) ∈ S (remark that in

this case,S⊂ Ŝ):

M1

L

M4M3

K

M2

For a givenω > 0 (we take the valueω =
0.1 in the numerical examples), we define






FP0
K,L = (1−4ω)FK,L for P0 = {(K,L)},

FPi
K,L = ωFK,L

for Pi = {(K,Mi),(Mi ,L)}, ∀i = 1, . . . ,4,

FP
K,L = 0 otherwise.

Assuming that this procedure has been applied to all initialfive-point connection,
let us give the resulting values of̂FK,L deduced from (14) in two cases:

{
F̂K,L = (1−4ω)FK,L

F̂K,M2 = ω(FK,L +FL,M2 +FK,M1 +FM1,M2).

4 Numerical results

The numerical tests presented here are inspired by [7]. The domain is defined by
Ω = [−0.5,0.5]x[−0.5,0.5]x[−0.15,0.15]. The permeabilityΛ(xxx),xxx ∈ Ω is equal
to 1 if the distance fromxxx to the vertical axis 0z is lower than 0.48, and to 10−3

otherwise (see Figure 1), which ensures the confinement of the flow in the cylinder
with axis 0z and radius 0.48. We use two Cartesian grids, the second one deduced
from the first one by a rotation of angleθ = π

6 with axisOz. The number of cells in
each direction(x,y,z) areNx = Ny = 51 andNz = 3. At the initial state, the reservoir
is assumed to be saturated by the oil phase. Water is injectedat the origin by an
injection well. Two production wells, denoted byP1 andP2, are respectively located
at the points(−0.3cosπ

3 ,−0.3sinπ
3 ,0) and(0.3cosπ

3 ,−0.3sinπ
3 ,0) (that means that

the three wells are numerically taken into account as sourceterms in the middle layer
of the mesh). The oil and water properties are respectively denoted by the indexo
andw. The viscosity ratio between the two phases is given byµo/µw = 100 and,
the density ratio is given byρo/ρw = 0.8. We use Corey-type relative permeability,
krw = S4

w and kro = S2
o. We use the method described in Sections 2 and 3, with

ω = 0.1 for all grid blocks which are inscribed in the cylinder (this value, also
used in [6], provides the less sensitive numerical results with respect to the grid
orientation). The same value for the time step is used for allthe computations, which
are stopped once a given quantity of water has been injected.Note that, in the mesh
depicted on the right part of Figure 1, the line(P2,O) is the axis 0y of the mesh. We



Grid Orientation Effect and MultiPoint Flux Approximation 7

Fig. 1 The two meshes used. In grey scale, the highest permeabilityzone, in black the lower
permeability zone. Squares indicate wells.

then see on Figure 2 the resulting contours of the saturation. We observe that the
results obtained using the method described in Sections 2 and 3 look very similar
in the two grids, whereas the ones obtained using the five-point stencil are strongly
distorted by the Grid Orientation Effect.

5 Conclusion

The method presented in this paper is a natural extension of the nine-point schemes
defined some decades ago on regular grids. Its advantage is that it applies on the
structured but not regular grids used in reservoir simulation, in association with
MultiPoint Flux Approximation finite volume schemes. It demands no further mod-
ification to the standard industrial codes, since the modification are only the defini-
tion of new coefficientsaM

KL used in (3).
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(a) θ = 0, stencilS (b) θ = π
6 , stencilS

(c) θ = 0, stencilŜ (d) θ = π
6 , stencilŜ

Fig. 2 Water saturation contoursSw = 0.1, 0.2, . . . ,1 at the same time.
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