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Abstract Some cases of nonlinear coupling between a diffusion eguatelated
to the computation of a pressure field within a porous mediana, a convection
equation, related to the conservation of a species, ledtetapparition of the so-
called grid orientation effect. We propose in this papena peocedure to eliminate
this Grid Orientation Effect, only based on the modificatmfnthe stencil of the
discrete version of the convection equation. Numericallteshow the efficiency
and the accuracy of the method.
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1 Introduction

In the 1980’s, numerous papers have been concerned withotbealled grid ori-
entation effect, in the framework of oil reservoir simutati This effect is due
to the anisotropy of the numerical diffusion induced by thEstteam weighting
scheme, and the computation of a pressure field, solution #lliptic equation in
which the diffusion coefficient depends on the value of theveated unknown. This
problem has been partly solved in the framework of induktaales, in which the
meshes are structured and regular (mainly based on squadlezibes). The liter-
ature on this problem is huge, and is impossible to exhalgtiyuote; let us only
cite [3, 4, 6, 10, 11] and references therein. In the 2000&r&s of new schemes
have been introduced in order to compute these coupledgrabbn general grids
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[1, 2, 5, 8]. But, in most of the cases, the non regular meshasezve structured
directions, although the shape of the control volumes isomgér that of a regular
cube. This is the case for the Corner Point Geometries [9¢lyidsed in indus-
trial reservoir simulations. The control volumes which ammmonly used in 3D
reservoir simulations are generalised “hexahedra”, instese that each of them
is neighboured by 6 other control volumes. In this case, teacdl for the pres-
sure resolution may have a 27-point stencil (using for imstaa MPFA scheme).
Nevertheless, selecting a 27-point stencil instead of aiftstencil for the pres-
sure resolution has no influence on the Grid Orientationdgff@hich results from
the stencil used in upstream weighted mass exchanges dowjite the pressure
resolution.

In order to overcome this problem, we study here a genetaisaf methods
consisting in increasing the stencil of the convection éignawithout modifying
the pressure equation. The method will be presented on diedgproblem, mod-
elling immiscible two-phase flow within a porous medium. k&t- RY (with d = 2
or 3) be the considered space domain. We consider the folgpiio-phase flow
problem inQ:

{ U — div(kg (WA Pp) =0 )
(1—u); —div(kp(u)AOp) =0,

whereu(x,t) € [0,1] is the saturation of phase 1 (for example water), and thezefo
1—u(x,t) is the saturation of phase R; is the mobility of phase 1 (increasing
function such thalt; (0) = 0), k» is the mobility of phase 2 (decreasing function such
thatky(1) = 0), andp is the common pressure of both phases (the capillary pressur
is assumed to be negligible in front of the pressure gradidoe to injection and
production wells) and we consider a horizontal medium welmpeability tenson .

Itis therefore possible to see System (1) as the coupling eflgptic problem with
unknownp and a nonlinear scalar hyperbolic problem with unknawn

m(u) = ka(u) + ke(u), f (U) = %

. . (u) @)
divF = 0 withF = —m(u)AOp
u +div(f(u)F) =0

We then consider a MultiPoint Flux Approximation finite vole scheme for the
approximation of Problem (1), coupled with an upstream Wweigy scheme for the
mass exchanges. Such a scheme may be written :

R =md Y alpy™with T afi=0 ()
Me.# Me..#

0
KW —ud)+a 5 (FUED - M ED ) =0 @)
Le Ak
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In the above system, we denote.l the finite volume mesh aR, K, L are control
volumes, 4k is the set of the neighbours Kf(i.e. control volumes exchanging fluid
mass withK), n is the time index and" is the time stepd” = t("™1 — (M) "
andu,(\;l1> are respectively the pressure and the saturation in corgtoimeM at time

t". The coefficientsa%L are computed with respect to the geometry of the mesh
and toA. The valumﬁ‘ﬂ is any average value (arithmetic or harmonic) of the values
m(uy”) andm(u™). ThenF." is the approximation of - n at the interfaceK|L
between control volumekk andL at time stem, and, for all reala, the valuesa™
anda~ are respectively defined by m@x0) and max—a,0).

The set/#k of the neighbours L is classically defined as all the control volumes
which have a common face with. But, as we show in this paper, this notion may be
relaxed. Defining the notion of “stenci8 C .#? by S= {(K,L) € .#? L € A},
this stencil is then equal to the set of @, L) € .#? such thaFéT may be different

from 0. In view of (5),Smust verify the symmetry property
Sc .#?andv(K,L) €S, (L,K) €S (7)

As we stated in the introduction, the drawback of the useisfdtencil for prac-

tical problems, wherﬁg‘ﬁ is computed from the resolution of a pressure equation,

is that it leads to the Grid Orientation Effect. Therefore, want to replace (6) by

K™ —u)+a" 5 (U ED - T ED7) =0 @

Le Atk

where the new stenc, defined byS= {(K,L) € .#2 L € .4}, is such that the
Grid Orientation Effect is suppressed. In (8), the vaIueﬁﬁefﬂuxes(lférfﬁ)(K L)es
will be set such that the two following properties hold: thexftontinuity holds

R +RY=0v(KLeS 9)

and the balance in the control volumes is the same as thafisdtby the fluxes
(FD ik pyes

S R vKe.. (10)
L,(K,L)eS L(K.L)eS

™M

~

=
I

In view of (15), we again prescribe the symmetry property
Sc.#?andv(K,L) €S (LK) €S (11)

The section 2 of this paper is devoted to the description oéthod for constructing
Ifénﬂ for a given stenciB, which ensures properties (9) and (10) (corresponding, for
a é]ivenn, to (15) and (16) below). The application of this method te tase of an
initial five-point pattern stencband of a nine-point stenc8is detailed in Section 3.



4 R. Eymard et al.

Then numerical tests show the efficiency of the method to flyhGrid Orientation
Effect (section 4).

2 Construction of F_ in the new stencilS

The method presented in this section concerns the recatismmuof the fluxes,
which has to be applied to each time step. Hence, for the &iitypbf notation,
we drop the index in this secEign. For a stenc8 C .2 such that (11) holds and
for given(K,L) € .#?, the set# . of the paths fronK to L following Sis defined
by

(. ((KiKia)si=1... N—LlwithK =K, Kn=L] _ =
yK'L'_{P_{andKi;éKjfori;«éjzl,---,N cSp- (12)

We denote byd?@_ the cardinality ot§7§,|_, i.e. the number of pati3 from K to L

following S. For anyP = {(Ki,Ki;1),i =1,...,N—1} € %, we denote b the

inverse path fronh. to K following S, defined by~ = {(Kit+1,Ki),i=1,...,N—1}.
We may now state the following result.

Lemma 1 (New stencil and fluxes)Let.# be a finite set, let 8 .#? be given
such that(7) holds. Let(F« L)k )es be a family such that the property
FeL+Fk=0, V(K,L)e.z?
holds. LetSc .#2 be given such thgtl1) holds and such that
V(K,L) €S #%. >0.

Forall (K,L) €S, Iet(F{L)PEﬁ | be afamily such that

VKL)ES Tz, FEL=FxL,
satisfying the property

V(K,L) €S YPe i, FEL +Fik =0. (13)
Then the familyFic.) s defined by
v(1,0)eS Rg= z &apFEL, (14)

(K.L)es Pek L

whereé jp is such tha) jp = 1if (1,J) € P andé; jp = O otherwise, satisfies

FcL+FAk=0Y(K.L)eS (15)
and R
z FkL = Z FeL, VK € M. (16)
L,(K,L)eS L(K.L)es
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Proof. Firstly, using definitions, for a givefi,J) € S we have(J,1) € Sand
Fi = Z EJ’|’pFLFjK. Then, thanks to the following equivalences
(LK)es PeA K

(L,LK)eS«<—= (K,L)eS
Pe Ak < P~ e.%.L
I eP < (1,J) e P,

and using (13), we can rewrit%J as follows

_ o _
Fu=- % &apFcL = —hJ
(K.L)ES pesi ’

which proves (15).
Secondly, for a giveh € .#, by reordering the sums, we can write that

S =5 Y > GapFeL= Y > XiPFCL
J,(1,9)eS 3,(1,9)eS (KD)eS pe 7 (K,.L)ES pe.#y

wherex| p = z & 9p is equal to 1 if there existd € .# such that(l,J) € P
J,(19)eS
(thereforel # L), and to O otherwise. Note that, fOK,L) € Swith K # | and for

Pe S, L with xip=1,wehavd #L, (LK) € S P~ €. k andxi p- = 1. So,
using (13), we obtain

XI,PFIZL =0.
(K,L)eSS.L.K#I Pe% L

Therefore we can write

S Ra= Y XpFL="Y > Fi= Y Fu
J,(19)eS L(LL)ES pe.# L(LLES pe.7 L,(l.L)es

which proves (16).

3 Application to an initial five-point stencil on a structured
guadrilateral mesh

Let us assume, taking the example of a 2D situation, thatrtiialistencilSis a
five-point stencil, defined on a regular quadrilateral mesh

S={(K,L) € .#?, K andL have a common edde (17)

and that the new stendis the nine-point stencil (see the figure below), defined by
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S=SU{(K,L) € .2, K andL have a common poirjt (18)

Then we definefFIZ,_) ,forall P e ?E,L and all(K,L) € S(remark that in

this caseSc S):

PeSkL
For a givenw > 0 (we take the valuev =
m 0.1 in the numerical examples), we define
F = (1—4w)Fq L for Ry = {(K,L)},
FIEI,L = O.)FKJ_
for B = {(K,M;),(M;,L)}, Vi=1,....4,

““ FL = 0 otherwise.

Assuming that this procedure has been applied to all irfitietpoint connection,
let us give the resulting values Bk | deduced from (14) in two cases:

{ el = (1—-4w)FicL
Frm, = w(Fe L+ FLm, + Fiomy + Fugmy)-

4 Numerical results

The numerical tests presented here are inspired by [7]. Dineath is defined by

Q = [-0.5,0.5]x[—0.5,0.5]x[—0.15,0.15. The permeabilityA (X),x € Q is equal

to 1 if the distance fronx to the vertical axis Bis lower than %8, and to 103
otherwise (see Figure 1), which ensures the confinemenedfdtv in the cylinder
with axis &z and radius G48. We use two Cartesian grids, the second one deduced
from the first one by a rotation of ange= £ with axisOz The number of cells in
each directiorfx,y, z) areNy = Ny = 51 andN, = 3. At the initial state, the reservoir

is assumed to be saturated by the oil phase. Water is injettdte origin by an
injection well. Two production wells, denoted By andP., are respectively located

at the pointg —0.3cosf, —0.3sin, 0) and(0.3cos], —0.3sin},0) (that means that
the three wells are numerically taken into account as sderaogs in the middle layer

of the mesh). The oil and water properties are respectivehoted by the inder
andw. The viscosity ratio between the two phases is giverupyuy = 100 and,

the density ratio is given bgo/pw = 0.8. We use Corey-type relative permeability,
ke, = S, andk, = . We use the method described in Sections 2 and 3, with
w = 0.1 for all grid blocks which are inscribed in the cylinder @hialue, also
used in [6], provides the less sensitive humerical resuith vespect to the grid
orientation). The same value for the time step is used fahaltomputations, which
are stopped once a given quantity of water has been injedtad.that, in the mesh
depicted on the right part of Figure 1, the lifi&, O) is the axis § of the mesh. We
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Fig. 1 The two meshes used. In grey scale, the highest permeabiditg, in black the lower
permeability zone. Squares indicate wells.

then see on Figure 2 the resulting contours of the saturaiMenobserve that the
results obtained using the method described in SectionslZdook very similar
in the two grids, whereas the ones obtained using the fivetgténcil are strongly
distorted by the Grid Orientation Effect.

5 Conclusion

The method presented in this paper is a natural extensidreafibe-point schemes
defined some decades ago on regular grids. Its advantagatig gpplies on the

structured but not regular grids used in reservoir simatgtin association with

MultiPoint Flux Approximation finite volume schemes. It denus no further mod-

ification to the standard industrial codes, since the madtific are only the defini-

tion of new coefficientsly, used in (3).
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